

DØ Detector and Operations Status

- Tevatron performance
- DØ performance
- DØ Control Room
- Data Monitoring

- DAQ improvements
- Online/Control Systems
- Detector Status
- Ignore most of the trigger issues...

Leslie Groer

Columbia University, New York

DØ Collaboration Meeting

April 24, 2002

Tevatron Performance

Collider Run IIA Integrated Luminosity

■ Weekly Luminosity → Run Luminosity

Shot setup time ~ 2-3 hr Store duration ~ 12 hr

Best store 1.6 x 10³¹ cm⁻¹ s⁻¹

Average weekly delivered luminosity ~ 1.5 - 2 pb⁻¹

Typically 3-5 shifts of beam studies per week

■ Peak Luminosity ▲ Peak Lum 20X Average

DØ Collaboration Meeting April 24, 2002

04/22/02

Tevatron Performance /cont.

- Proton (antiproton) haloes are about 20-60 kHz (2-4kHz)
- Reduction in losses in BLMs during shot setup (infamous "step 13") around beginning of April (30 rads → 5 rads)
- Settings for integrated and instantaneous dose alarms and abort settings are being reviewed
 - Did pull radiation abort Feb 1 as peak rate was > 12 rad/s
- Total integrated dose seen by silicon ~10 krads (rad. hard to 2 Mrad)
 - Incident on Mar 30th where beam debunched on RF stations tripped and CDF lost 6 SVX ladders, DØ saw only about 0.06 rads in 5 minutes (0.1 mrad/s)
- Instituted interlock TeV abort on RF trip and AA marker
- Shutdowns planned:
 - 10-14 days sometime after May 15 (decide at PMG May 7) for installation of stochastic cooling tanks for the antiproton ring – hope for immediate improvement in luminosity
 - ~6 week shutdown starting Sept 30, driven by schedule for work on the antiproton recycler

Beam Position at DØ IP

- Measure Beam Position at z~0
- Vertices with 3 or more SMT tracks attached from p10.15.01 reco.
- Large jumps seem to occur whenever we have sustained periods of shutdown and/or after the accelerator beam studies (few hundred microns)
- Typical max-to-max variation of average beam position in a day is about 10 microns
- There are slow drifts of 30 microns per week in x from early-March to end of March
- Z position stable to within 2 cm over a month with jumps of 5 cm seen (r.m.s. 25-30 cm)

DØ Performance

- 36 pb⁻¹ delivered
- 25 pb⁻¹ utilized
- 10.5 pb⁻¹ recorded physics
- 8.4 pb⁻¹ reconstructed
- 65 million recorded
- 45 million root

Offline data processing status

DØ Detector and Operations Status

DØ Collaboration Meeting April 24, 2002

DAQ Improvements

March 26 new L3/cDAQ installed

Data taking efficiency

- Live = physics run enabled and no trigger disables
- Down-time = no physics run enabled

Offline reconstruction

- Offline farms keeping pace with data from the detector
- Reconstruction about 4 million events per day
- Collect < 1 million events/day
- P10.15.01 on the farms

Notable Operational "Events" at DØ

- SMT IB power supply problems
 - Access Jan 9-10 for repairs (4 supplies)
 - Access Feb 21-22 for 2 supplies
- Master clock glitches (mid-March)
 - Bad Phase Coherent Clock (replaced 3/13) need to get spares
 - Continuing annoying events for a few days after
 - SCL disappearance plays havoc with sequencers, AFEs etc
- SMT water leak March 29
 - Trips occurred few times a day (whole East side of SMT IB)
 - Adding cooling water at 1 gal/day
 - Investigation of cooling line on April 4 confirmed leak
 - SMT-East off April 4-11
 - Opened cathedral for repairs (disconnect water) April 11
 - Open (close) in 4 (3) hours
- L3 DAQ replacement in March
 - L2 Trigger components coming online

Improvements in the Control Room

- Luminosity reporting per run/day/week see Lum ID page
- Working on tools for general downtime log
- Modifications in the control room
 - Swapped FPD and CFT consoles
 - Consolidation of safety consoles more room for SMT
 - Add L2 console
 - New carpet, chairs, whiteboards, photographs, trigger quilt
- Regular accesses to the collision hall Make sure your training is up to date
- Checklists to help improve efficiency and communication store, runs checklist
- Ultimate goal to increase efficiency during good luminosity and to improve communication between various shifters

DØ Shifts

DØ Shifts

- ◆ Shift Captain (Etta Johnson)
 - ▲ Pool of about 35 captains (6 shifts/2months)
- ◆ DAQ Shifter (Alan Stone, Bill Lee, Drew Alton)
 - ▲ 35 DAQ shifters/year, 2-3 shifts overlap for training
- Operations shifter (Russ Rucinski)
- Detector: CAL, CFT, FPD, MUO, SMT
- Software shifts e.g. SAM, Reco
- On-call people for each subsystem
- 3 shifts/day x 365 days = 1095 shifts per position
- Consolidation of shifts down the road....
- Average about 15 shifts/person for 366 people who did shifts in last year (statistics courtesy of Alan Stone→IB meeting)
- Don't be shy about signing up!!!

You here!

Online Data Monitoring

- Work on better tools for monitoring data and triggers
- Examines group developing better tools and methods to select data and display it

(Pushpa Bhat, Andrei Mayorov, Joel Snow + others)

e.g. select run/trigger on the fly, end-run summaries Physics examine (Michiel Sanders)

 Runs configurations to be stored in name-value server and in Runs Summary database

e.g Luminosity trigger rate GUI

Jaewon Park

Offline Data Quality

- Provide simple access to offline run quality information for analyses
- Store quality information by group
 - detector, ID object, physics, trigger
- Incorporated as sub-tables of Run Summary Database (J. Simmons / V. Sirotenko)
- At least one status word per group with common structure for general use provided to reco, root, thumbnail
- **Current definitions:** good, reasonable, bad, special, unknown
- Groups are responsible for updating relevant information
 - web, GUI, reco, scripts, examines

Stefan Söldner-Rembold

Replaced L3/DAQ System

- L3 "Commodity" DAQ
 - Replace all VME Buffer Driver boards (VBD) by SBCs and send data over fast ethernet switches
- SBC (Single Board Computer)
 - Intel 1GHz, VME based, dual 100Mb ethernet, Linux OS
- Routing of data blocks performed by specialized SBC that talks to the Trigger Framework – the Routing Master (RM)
- Event building and trigger decisions performed by Linux farm nodes
 - Old system used NT DAQ nodes for event building with Linux farms for filtering
- ✓ Software transition Mar 26, fairly painless...

L3 Über Monitor

L3 Past...

L3 Present...

L3 Future...

L3/cDAQ continued

- All essential components have been ordered
 - All switches delivered and installed
 - 58/72 SBC's delivered
 - 17/77 Digital I/O boards delivered
- Expect to start installing remainder of SBCs in 2 weeks
 - need DIO, extender boards and "Xmas-light" front panels
 - 6 installed now for testing and real operations
 - Transparent to the user...
- Fine tuning and improvements in monitoring and operations
 - Relatively stable operations for nearly a month
- Wait to purchase more farm nodes (dual P4) + Cisco switch blades if necessary
- Work on L3 Trigger Crate for RM to have 128 disable lines to the TFW continuing (have 32 now)

L3 cDAQ Expected Rates

- Individual readout crates are almost all capable of > 1 kHz
- Front-end Glitches
 - known Muon MFC issues
 - **▲ 2 preproduction MFCs work fine; remainder in ~ 1 month**
 - VRBC multibuffer mode buffer corruption
 - ▲ Firmware issue; being actively pursued
 - Multibuffer mode for all other crates works (with some debugging)
- With multiple crate readout, limited by ethernet (data volume) for VRC
 - MUO (1kHz), CAL (500Hz), SMT (200-300Hz)
 - MCHI software VRC (100 Hz)
- With resolution of VRBC issue + start of SBC installation expect few hundred Hz in a few weeks (500 Hz?)

Tremendous thanks to the L3 team for their hard work and dedication which has led to the smooth transition

Global Trigger Lists

- **Trigger Board meets once a week**
 - Starting to raise the threshold on certification of triggers
- Not too many handles to tweak the last few months...
 - Are running L1 muon, L1 CAL and L3 filters on jet, EM, tau objects.
 - L3 Muons are imminent. L2 muon tested and almost ready to go in.
- global_CalMuon triggers
 - Version 1.4-1.5 Before October shutdown
 - Version 2.0-2.1 28 November 18 December
 - 18 December through January (Moriond dataset) Version 3.00-3.30
 - **L**1 Cal (jet,e) and muon (μ , $\mu\mu$), (+ τ) triggers with L3 filters in Mark-and-Pass mode
 - Version 4.00-4.30 February through March (40 Hz in to L3)
 - ▲ Start filtering at L3 (with ~10% M&P), additional (J/psi) and tweaking of L1 trigger thresholds
 - Version 5.00-5.01 running since March 21
 - ▲ Removed "safety net", new QCD jet triggers, L3 EM shower shape
 - Version 6.00 waiting in the wings...
 - ▲ L3 muon filters

Online Systems

Hardware

- Additional nodes for the Control Room
 - ▲ Graphics (event display), 4-head (spare for DAQ), D0/Accelerator gateway, L2 monitoring, SMT web display/monitor
- Recycle some of the L3 NT nodes
- Double memory in most nodes
- Work on GB-capable Collector and Distributor nodes (Linux driver problems...)
- Improving DAQ infrastructure to handle anticipated rates (L3 network and MCH)

Control system hardware:

- collecting bits and pieces of 1553 controllers, RMIs, rack monitors
- debating Run2b future of 1553 components: scavenge or rebuild?
- "using up" spare PowerPC processors few more to be purchased

Controls

- COMICS (download process)
 - New release pending
 - More robust code
 - **▲** Error recovery with retries
 - ▲ Transaction log
 - **▲** Extensible load actions
 - Verify mode completed and tested
 - Expert GUI under development
- Name Server
 - Based on EPICS process variables
 - Server host installed
 - Automatic context save and restore installed
- Access Control added to IOC's
 - Master clock
 - Calorimeter and muon HV system
- Hardware Database
 - Contains 100K records (process variables)

- SES (Alarm System)
 - Now in use by most detector groups
 - Alarm watcher released
 - ▲ Verbal notification (the voice!) of conditions serious enough to warrant at least pausing a run
 - ▲ Auto-Pause mode tested but not in use yet
 - ▲ Database templates being modified to activate watcher
 - ▲ HV trips sending alarms already
 - ▲ Adding LVPS trips
 - Database templates modified
 - ▲ HV templates generate alarms
 - ▲ Most Calorimeter and Muon templates generate alarms

Silicon Microstrip Tracker

- Barrel Detectors measure central tracks
- Disk Detectors for forward tracking
- ◆ 6 Barrel (each 12cm long) |z| < 38.4 cm</p>
- 12 F-Disks
- 4 H-Disks
- 702 000 readout
- 793 000 readout channels

- 2.7 cm < R < 9.5 cm
- 2.6 cm < R < 10.5 cm
- 9.5 cm < R < 26 cm

Percentage of working devices:

Barrel: ~95%, F-disks: ~95%, H-disks: ~87%

Total: 93%

|z| < 54.8 cm

|z| < 120 cm

SMT Status

Operations

- Inserting bleeding resistors in parallel with HV pods to reduce ramp down time (15 min → 3 min)
- Disconnected water flow to SE1 IB crate on April 11 due to water leak from water-cooled heat exchanger
 - ▲ Crate only dissipates 450W; runs about 10°C warmer than other crates (air cooled)
- Install grounding straps on IB crates during longer shutdown
- Run calibrations runs about once a week

Analyses

- Investigating source of noise problems ("grassy noise") in Micron F-wedge
- Working on geometry and alignment

SMT Clusters

S/N > 10 as expected!

pulse-height correlation between p- and n-side

CFT/CPS/FPS/FPD AFE

AFE boards come in three classes (differing in input gain and VLPC bias control)

- ◆ CFT only ("green" boards)136 needed (76 for axial/trigger).
- ◆ Combined CPS/CFT
 ("blue"boards) 30 needed
 (all are used in the trigger)
- FPS (red boards)32 needed(all are used in the trigger)

- 2 AFEs per VLPC cassette
- 512 channels, 8 MCM (1 SVX, 4 SIFT chips
- Provide digital trigger information, pulse height and control temp & bias

CFT+PS Status

- 167 Analog Front End (AFE) boards currently installed on the platform
- ✓ The Central Fiber Tracker and Preshower are fully instrumented as of last week
- The infrastructure for Forward Preshower Detector (FPS) readout is being exercised
- ✓ 92% of installed AFE boards currently have revised
 temperature and bias control
- Remaining installed AFE boards do not usually latch under current operating conditions
- Expect to complete instrumentation of Forward Preshower Detector within six weeks

CFT+PS Status / cont

- CFT+PS readout is generally well behaved
- Detectors appear to be performing well
- Tracks are routinely being reconstructed, and results are being incorporated into higher level analyses
- But there is still plenty of work to get system fully operational, corner undesirable features of the system, and to optimize performance of the CFT+PS readout system (e.g. split pedestals, coupling of threshold and pedestal values etc)

- Substantial progress developing, testing, and integrating components of the L1 Central Track Trigger
 - integration tests are in progress at the Combined Test Stand
 - virtually all hardware is installed and cabled up
 - relative timing of control signals at Mixer Box has been verified on the platform for one (of five) trigger supersectors
 - highest priority assigned to providing tracks to L1 Muon (expected before June 1)

Tremendous thanks are due also to the AFE team for their hard work, long hours and dedication

DCA from Global Tracks

- Impact parameter resolution about 42 microns for global tracks with p_t > 3 GeV
- Beam spot size is about 28 microns

Calorimeter/ICD

Calorimeter

- Very stable running occasional power supply or board replacement needed
- ~50 bad channels (0.1%)
- Trigger readout to |η|<0.8, 1.6 imminent, then 2.4
- Preliminary measurements of coherent noise
 < 0.5 ADC counts (< 2 MeV)
- Removal of slower SCA chips + timing code corrected
- Studying calibration with pulsers and non-linearity effects

ICD

- HV stable
- Spare PMTs in stock need characterization and then replace weaker tubes
- Understanding channel mapping and fine-tune energy scale and calorimeter weights
- Improve MC geometry and material representation

Timing Studies and Improvements

➤ Modified relative timing between quadrants in Timing and Control FPGA code

Sampling time vs amount sampled

ADC count / peak value

when sample at (relative to peak):

- ·-50 ns 98.01%
- ·-30 ns 99.29%
- -20 ns 99.69%
- ·-10 ns 99.92%
- 10 ns 99.93%
- 20 ns 99.71%
- 30 ns 99.34%
- 50 ns 98.23%

Leslie Groer Columbia University

Crates (except for ECSNW) have

Mean: within +/- 10 ns For Crate 4 sampling time is 25ns away

Non-Linearity studies

Non-linearity has significant effect in low energy region (jet resolutions etc)

But can be parametrized. Package available (cal_nlp) and next release P11.06 will have it.

Hardware fix is non-trivial, but studies underway with modified BLS boards

Muon

- Muon Fanout cards to be replaced as well as 68k processor boards with PPCs (~ 1 month)
- Preproduction MFCs clearly working better
- L2 and L3 triggers imminent
- Central Muon PDT mostly stable running
 - Occasional (<2%) synchronization problem in
 2 front-end crates being worked on (gain 5-8% of dead-time)
 - All channels calibrated and t_o values loaded
 - Efficiency studies underway (hits and segments)

Leslie Groer

Columbia University

DØ Detector and Operations Status

DØ Collaboration Meeting April 24, 2002

Central Muon Scintillator

- 360 cosmic-cap, 630 A-φ counters
- No major problems
- All B and C layer alive, 1 dead A layer
- 93% B and C layer calibrated with adjusted thresholds to compensate for gain variations
- Looking at LED data for A-layer gains to combine with cosmic data

Forward Muon Trigger System (Pixel)

Stable operation

- Less then 0.2% dead channels
- Long term stability of amplitude (~5%) and timing (better than 1ns)
- MIP detection efficiency is >99%
- no radiation aging up to well above 15fb⁻¹

Timing (Dec-May)

Forward Muon Tracker (MDT)

- 50,000 channels mini-drift tube based system is operating smoothly
 - efficiency of drift cells is >98%
 - total number of dead channels is 0.5%
 - used for off-line muon track reconstruction (soon L1, L2 and L3 triggering)
 - no radiation aging concerns to well above 15fb⁻¹

FPD Commissioning

- Routinely insert pots during collisions
- Timed in with TFW with single coalesced proton bunches
 - Working on rapidity gap + jet triggers and FPD scintillator trigger AND/OR terms
- Have recorded > 2 million events with elastic trigger using stand-alone DAQ
 - Data analysis underway
 - have preliminary efficiency and resolution measurements for PD1 and PD2 detectors

- Working on sDAQ and FPD integration: one spectrometer (1 AFE) readout starting in May
- In June shutdown install multiplexor, allows simultaneous 18 pot control, more diagnostics, liberate a few rack monitors
- Also in shutdown, attempt to repair small vacuum leak at A2U bellows (may disable one spectrometer until fall shutdown for repairs)
- Installation of readout chain for Phase I by June/July (trigger in July/August)
 - ▲ 10 detectors / 5 spectrometers (requires 3 AFE's)

Conclusions

- Many things are working very well
- However there are many new systems and capabilities turning on in the next few months
 - Need to disrupt current operating status minimally while we improve things
- An exciting time to be in the Control Room
- If you're not there already...

L1 Muon Trigger

- Central and Forward scintillator triggers only with MDT centroids readout
- All 5 MCEN and 4 L1Muo crates being readout
- Verification of hardware and data through simulator < 1%
- Occasional glitch in readout and synchronization problems (requires SCL reset)
- Replacement ten-wire flavor boards with improved BGA layout in early June
- Focusing on improving trigger algorithms and working on new firmware
- PDT centroid triggers by May
- Scintillator triggers with L1CFT starting in May
- Muon shifters monitor trigger rates in the Control Room